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This consensus document is the second of two reports summarizing the views of an expert panel organized by the
European Association of Percutaneous Cardiovascular Interventions (EAPCI) on the clinical use of intracoronary
imaging including intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near infrared spec-
troscopy (NIRS)-IVUS. Beyond guidance of stent selection and optimization of deployment, invasive imaging facili-
tates angiographic interpretation and may guide treatment in acute coronary syndrome. Intravascular imaging can
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provide additional important diagnostic information when confronted with angiographically ambiguous lesions and
allows assessment of plaque morphology enabling identification of vulnerability characteristics. This second document
focuses on useful imaging features to identify culprit and vulnerable coronary plaque, which offers the inter-
ventional cardiologist guidance on when to adopt an intracoronary imaging-guided approach to the treatment of
coronary artery disease and provides an appraisal of intravascular imaging-derived metrics to define the haemo-
dynamic significance of coronary lesions.

...................................................................................................................................................................................................

Keywords Percutaneous coronary intervention • Intravascular imaging • Intravascular ultrasound • Optical coherence
tomography • Acute coronary syndrome

Preamble

This consensus document, a summary of the views of an expert panel
organized by the European Association of Percutaneous
Cardiovascular Interventions (EAPCI), appraises current evidence on
clinical indications for intracoronary imaging and provides guidance
to the interventional community regarding recommended use,
strengths, and potential limitations of intravascular ultrasound
(IVUS), optical coherence tomography (OCT), and near infrared
spectroscopy (NIRS)-IVUS based on existing evidence and the best
current practice. The selection of the expert group, the organization
of manuscript preparation and consensus development were detailed
in Part 1.1

Introduction

The role of intracoronary imaging to enhance the outcome of per-
cutaneous coronary intervention (PCI), particularly through pa-
tient selection and criteria for guiding stent optimization was
outlined in Part 1.1 Our consensus opinion has been strengthened
by recent European guidelines enhancing the recommendation for
use of OCT for stent optimization to Class IIa.2 Furthermore, a
trial of IVUS- vs. angio-guided PCI has confirmed a reduction in tar-
get vessel failure at 12 months through IVUS-guided optimization3;
and updated meta-analyses now indicate a mortality advantage.4

Extending the role of intracoronary imaging, requires a shift in
focus from the PCI to pre-PCI assessment of the coronary vascula-
ture. Part 2 will focus on the use of intravascular imaging in patients
presenting with acute coronary syndrome (ACS), and its role in
defining the composition of atherosclerotic plaque, particularly de-
tection of culprit lesions and markers of vulnerability. Additionally,
we will emphasize the role of intravascular imaging when angio-
graphic assessment is ambiguous or inconclusive, and its potential
for assessing stenosis haemodynamic significance. We believe
these extended benefits of intracoronary imaging will provide con-
siderable value to the interventional community and their patients;
however, we acknowledge that large scale, robust data is lacking in
many of these fields. This strengthens the need for our consensus
document to provide clinicians with guidance on the application of
intracoronary imaging modalities.

Acute coronary syndromes

The greatest impact of PCI has been observed in the treatment of
patients with ACS.5 These patients are at highest risk of major

adverse cardiovascular events (MACE) when compared with patients
presenting with chronic coronary syndromes.6

Identification of the culprit lesion
The focus of management for patients presenting with acute chest
pain and ST elevation is immediate angiographic assessment.7 In the
majority of patients, a culprit lesion is identified and recanalization
with stenting is undertaken. However, diagnostic uncertainty can exist
and the treating physician should consider non-atherosclerotic aetiol-
ogies, if presenting with atypical symptoms, unusual patient demo-
graphic/clinical risk profiles or in the absence of significant obstructive
coronary artery disease (CAD) on angiography [4–10% of patients
presenting with ST elevation ACS (STEACS)8,9]. The exclusion of an
atherosclerotic ACS aetiology has important lifelong impacts for the
patient, avoiding an erroneous diagnosis, and minimizing exposure to
acute anti-thrombotic/anti-platelet and anti-atherosclerotic therapies.

Angiographic interpretation in patients with non-STEACS
(NSTEACS) poses greater challenges due to the heterogeneity of
presentation with respect to time from symptom onset, electrocar-
diogram (ECG) changes, and the possible absence of ventricular re-
gional wall motion abnormalities. An identifiable culprit lesion may be
absent in >30% of patients and >10% of patients may have multiple
culprit lesions on angiography.10 Similar to patients presenting with
STEACS, 4–10% of NSTEACS presentations have non-obstructive
CAD11 but associated hazard for future events.12

It is important to acknowledge the inherent weakness of coronary
angiography to accurately assess vessel and lumen geometry, and its
inability to evaluate plaque components and accurately detect the
presence of thrombus—information more accurately provided by
intravascular imaging.13 Where diagnostic or angiographic uncer-
tainty exists in the setting of ACS, we propose a role for intracoro-
nary imaging to aid diagnosis and guide treatment (Figure 1).

Intracoronary imaging can delineate luminal discontinuity/plaque
disruption and associated thrombus, the hallmarks of a culprit lesion.
Optical coherence tomography provides accurate detection of intra-
luminal thrombus14 and is capable of distinguishing red and white
thrombus due to the optical attenuating property of red blood cells,
abundant within red thrombus (Figure 2 and Supplementary material
online, Table S1). Intravascular ultrasound detection of thrombus is
more challenging (see Figure 2, Panel 2) but can be improved by sta-
tionary imaging at the level of the presumed thrombus and a small in-
jection of contrast to highlight the luminal contour. The advent of
high-definition IVUS promises superior resolution and improved diag-
nostic capabilities, however, at present a data-driven comparison
with OCT is lacking.

2 T.W. Johnson et al.
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..Lesion morphology identification in
acute coronary syndrome and
implications for treatment
Rupture of a thin-cap fibroatheroma (TCFA) with associated throm-
bus formation has been the historical focus of attention in ACS and
treatment has been tailored to stabilize this plaque type.15 However,
pathology series and prospective studies conducted with intracoro-
nary imaging demonstrated that one-third of all ACS and one-quarter
of STEACS are caused by plaques with an intact fibrous cap16,17—the
majority identified as eroded plaques and a small cohort of calcific
nodules. Intravascular imaging, in particular OCT, has enabled identifi-
cation of these atherothrombotic features in patients presenting with
ACS, shedding light on in vivo mechanisms and suggesting tailored
therapeutic interventions, as outlined in the subsequent sections.
Despite the superior resolution of OCT, enhancing plaque identifica-
tion, the presence of thrombus in the acute setting can obscure the
underlying vessel wall preventing plaque classification in >20% of
cases.18 In parallel with identification of culprit plaques, intracoronary
imaging has increased the awareness and diagnosis of non-
atherosclerotic ACS events, discussed in Non-Atherosclerotic ACS
Presentations section.

Plaque rupture

Plaque rupture is defined by discontinuity of the fibrous cap overlying
a lipid-rich core (Figure 3). Ruptured fibrous cap-ACS is commonly
associated with a vessel wall cavity, without IVUS or OCT signal, gen-
erated through downstream embolization of the necrotic core.
Thrombi are often found overlying the ruptured segment. However,
thrombus may be absent at the site of an old plaque rupture or with

fresh rupture treated with anti-thrombotic/anti-coagulant therapies.
Multiple plaque rupture sites may be evident and differences between
culprit and non-culprit lesions have been observed, with the pres-
ence of thrombus, smaller luminal area, and greater plaque burden
associated with culprit lesions.19

Plaque erosion

Plaque erosion is characterized by endothelial denudation, a poorly
understood pathological process occurring at a level that is undetect-
able by current intracoronary imaging modalities. Only OCT has
been successfully used, in clinical practice, to identify plaque erosion,
although the diagnosis is one of exclusion, where thrombus is associ-
ated with non-disrupted plaque. An OCT diagnosis of plaque erosion
is considered ‘definite’ in the absence of fibrous cap disruption, in a le-
sion frequently composed of fibrous tissue, with overlying luminal
white thrombus. A ‘probable’ OCT-erosion may lack luminal throm-
bus but demonstrates an irregular luminal surface, or has overlying
thrombus with attenuation of the underlying plaque, without evi-
dence of superficial lipid or calcification in the vessel upstream or
downstream of the thrombus site16 (Figure 3). Effective blood clear-
ance is very important to minimize the potential for misdiagnosing
OCT-erosion secondary to streaming of blood, particularly when in
contact with the lumen wall.

A recent analysis of 51 patients with ACS (STE-/NSTE-ACS)
undergoing three-vessel OCT assessment20 demonstrated that
patients with erosion, vs. plaque rupture, had a lower percentage of
TCFA, smaller lipid burden, and thicker fibrous cap. A large prospect-
ive series of 822 STEACS patients investigated the predictors of pla-
que erosion by OCT.21 Overall, plaque erosion tends to occur with

Figure 1 A treatment algorithm to guide the use of intravascular imaging in patients presenting with acute coronary syndromes.

Clinical use of intracoronary imaging 3



Figure 2 The role of intravascular imaging in delineating thrombus. Panel I: an angiographic image of a left anterior descending artery in a patient
with ST-elevation myocardial infarction presentation and anterior ST-segment elevation. A hazy filling defect is evident in the proximal segment of
the vessel, highlighted by white arrow A. Optical coherence tomography image (A) demonstrates red thrombus (red arrows) with an irregular sur-
face and adherent to the lumen, attenuating the light, and obscuring deeper structures. Panel II: a 45-year-old woman was admitted with chest pain

4 T.W. Johnson et al.
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greater frequency in younger patients, especially pre-menopausal
women. Additionally, current smoking, absence of traditional coron-
ary risk factors, lack of multi-vessel disease, reduced lesion severity,
larger vessel size, and nearby bifurcation were significantly associated
with plaque erosion. Nearby bifurcation and current smoking were
especially notable in men, while age < 50 years was most predictive in
women. Existing data suggest that plaque erosion is associated with
better outcomes than plaque rupture.22,23

Identification of plaque erosion may facilitate tailoring of patient
treatment. A proof-of-concept study, including 60 patients with short
(1 month) follow-up, has demonstrated that plaque erosion associ-
ated with a residual diameter stenosis <70% may be treated conser-
vatively, with anti-thrombotic and anti-platelet therapy, allowing
avoidance of stent deployment.17 A randomized control study is
needed to further explore this concept.

Eruptive calcific nodule

Discrete calcific nodule with associated plaque disruption is the least
frequently observed substrate for ACS but can pose significant chal-
lenges for stent deployment and optimization. The process was first
identified by IVUS24 with subsequent pathological studies demon-
strating that eruptive calcific nodules are responsible for 2–7% of
acute coronary events.25 The lesions exhibit breaks in a calcified plate
that disrupt the fibrous cap and are overlaid by thrombus.26 Imaging
of erupted calcific nodule is possible with IVUS and OCT, with OCT
providing superior detection of thrombus, delineation of superficial
and deep boundaries of calcium and plaque disruption (Figure 3).
However, there are limitations to OCT imaging, for example, the
presence of protruding calcium can pose challenges in tissue differen-
tiation, particularly through attenuation of deeper structures result-
ing in mis-representation as red thrombus and potential misdiagnosis
of an acute culprit event. Similarly, distinguishing lipid core from cal-
cium, if the boundaries are ill-defined, or detecting calcium when
there is overlying thrombus can be better achieved with IVUS and vir-
tual histology (VH)-IVUS.27

Histopathological comparison has demonstrated that OCT can
differentiate various types of coronary calcification and accurately de-
tect calcific nodules. In clinical OCT studies, an eruptive calcific nod-
ule has been defined as a lesion that exhibits evidence of fibrous cap
discontinuity and/or thrombus, over a calcified plaque characterized
by protruding calcification into the lumen, and the presence of sub-
stantive calcium proximal and/or distal to the lesion.16 Intervention in
ACS patients presenting with eruptive calcific nodules is associated

with higher target lesion revascularization rates, highlighting the com-
plex nature, and challenging treatment of this lesion subset.28

Recently, analysis of a large core laboratory OCT series has pro-
posed additional calcific lesion substrate for ACS, specifically superfi-
cial calcific sheets, which were associated with greater post-PCI
myocardial injury.29

Delineating the nature of calcific ACS lesions with intracoronary
imaging guides adjunctive therapy, including vessel preparation with
aggressive pre-dilatation, cutting balloons, rotational or orbital athe-
rectomy, laser therapy, or lithotripsy. Further studies are required to
guide selection of plaque modification strategy according to calcium
substrate, to ensure effective post-stent optimization, as outlined in
Part 1.1

Non-atherosclerotic acute coronary syndrome

presentations

Myocardial infarction with non-obstructed coronary arteries
Confirmation of non-obstructed coronaries in patients presenting
with ACS is often considered a reassuring finding. However,
MINOCA is not benign. Systematic review has demonstrated a 12-
month mortality of 4.7%,30 which far exceeds comparative rates in
an equivalent population without ACS. The ESC working group on
cardiovascular pharmacotherapy have outlined a differential list
including angiographically undetectable plaque disruption, coron-
ary artery spasm, coronary thromboembolism, spontaneous cor-
onary artery dissection (SCAD), takotsubo syndrome, and
myocarditis.31

A study of women presenting with myocardial infarction (MI) and
non-obstructed coronaries revealed plaque disruption in 38% of
those undergoing IVUS evaluation.32 Additionally, the superior reso-
lution of OCT has the potential to detect a thromboembolic or vaso-
spastic aetiology, if thrombus is observed in the absence of
atherosclerosis or luminal irregularity (Figure 4). Clearly, the differen-
tiation between a plaque-induced event and the presence of embolic
thrombus, despite angiographically non-obstructed coronary
arteries, significantly alters the acute and long-term patient manage-
ment. Consequently, we advocate undertaking intracoronary imaging
at the time of index angiography, if there are non-obstructive coron-
ary lesions or if the clinical presentation does not favour other non-
coronary MINOCA aetiologies (e.g. myocarditis). Usually imaging will
be limited to epicardial territories with coronary lesions or associated
ECG/echo features of ischaemia, however, three-vessel imaging may
be considered (Figure 1).

and anterior ST-elevation. Emergent angiography revealed a filling defect in the mid-left anterior descending artery. After thrombus aspiration angiog-
raphy showed a tubular stenosis in the mid-left anterior descending artery (B) that was investigated with intracoronary imaging to determine the sub-
strate of the acute coronary syndromes. Corresponding intravascular ultrasound and optical coherence tomography images are shown. (C and D)
Cross-sectional and longitudinal intravascular ultrasound images (40 MHz) demonstrating the presence of atherosclerotic plaque (visible in C from 2
to 6). Intraluminal material protruding towards a small side branch was visible (blue arrow). Optical coherence tomography (E and F) confirmed the
presence of atherosclerosis (with lipid content given the attenuation observed) and demonstrated the presence of white thrombus (irregular mass
protruding into the lumen with optical shadow). White arrow indicates the guidewire artefact. Asterisk indicates the side branch used for matching
of corresponding cross-sections. Panel III: left anterior descending artery with mid-vessel filling defects secondary to a conservatively managed anter-
ior ST-elevation myocardial infarction 10 years earlier. Longitudinal optical coherence tomography imaging with three representative optical coher-
ence tomography frames (G, H, and I) demonstrating re-canalized thrombus. Matched HD-IVUS (Boston Scientific) images (Gi, Hi, and Ii)
demonstrating the superior delineation of structures with light-based imaging.

Clinical use of intracoronary imaging 5
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..Intravascular ultrasound evaluation of vasospastic coronary
segments has demonstrated underlying evidence of atheroscler-
otic lesions with a high incidence of negative arterial remodelling33

and relative absence of calcium.34 An OCT study, including
patients presenting with ACS, demonstrated lumen irregularity
with thrombus in 25% and evidence of plaque erosion in 26%,

supporting the need for anti-platelet therapy in this challenging
cohort.35

Takotsubo syndrome was originally described in the absence of
CAD but the InterTAK criteria now highlight that CAD does not ex-
clude a diagnosis.36 Intracoronary imaging is, in general, not essential
for the diagnosis but may be valuable to exclude a culprit plaque

Figure 3 The role of optical coherence tomography to define atherosclerotic acute coronary syndrome plaque aetiology. Panel I: plaque ero-
sion—angiographic image shows a severe stenosis in the mid-left anterior descending coronary artery (indicated by arrows B and C). Serial
intravascular optical coherence tomography cross-sectional images indicate that no rupture is detected in the culprit lesion. Optical coherence tom-
ography-erosion is identified as an irregular lumen surface with attached mural thrombus (white dotted outline on cross-sections and longitudinal
image) overlying a fibrous plaque (B and C). Cross-sectional images indicate thick-cap fibro-atheroma proximal (A) and distal (D) to thrombus, imme-
diately before a major diagonal branch (white asterisk). Panel II: plaque rupture—angiogram demonstrates a culprit lesion in the left anterior descend-
ing coronary artery (indicated by arrows F and G). Plaque rupture is identified on cross-sectional and longitudinal optical coherence tomography
images by the disrupted fibrous-cap (red arrowheads) and a cavity formation inside the plaque (F and G). Cross-sectional images indicate optical co-
herence tomography-defined thin-cap fibroatheroma in the proximal (E) and distal (H) segments of the culprit lesion. Panel III: eruptive calcific nod-
ule—angiography demonstrates a moderate lesion in the proximal left anterior descending artery (indicated by arrows J and K). Optical coherence
tomography evaluation of the vessel confirms calcific infiltration of the vessel wall. The distinct margins of a superficial calcific sheet are demonstrated
in Panel III-I from 11 o’clock to 2 o’clock. Disruption of the luminal contour with overlying red thrombus (red arrowheads), resulting in image attenu-
ation (12–3 o’clock) is evident in Panel III-J. Immediately downstream the irregular protrusion of the calcific nodule is better delineated (Panel III-K
white arrowhead). It is important to note that the nodule generates significant attenuation, obscuring deeper vessel structures, and this can result in
misclassification as red thrombus. Endothelial integrity is confirmed more distally (Panel III-L).

6 T.W. Johnson et al.



Figure 4 The role of intravascular imaging in non-atherosclerotic acute coronary syndrome presentations. Panel I: a 39-year-old man with no car-
diovascular risk factors presented with acute onset chest and abdominal pain and evidence of inferior ST elevation. Immediate angiography demon-
strated a filling defect in Segment 3 of the right coronary artery (Panel I-A—filling defect highlighted in enlarged panel by white dotted outline). Optical
coherence tomography assessment confirmed fresh red thrombus with associated attenuation [Panel I-B—red dotted lines indicate margins of attenu-
ation (white double arrow head arc)]. Neighbouring regions demonstrated minimal pathological intimal thickening with a tail of thrombus (Panel I-C—
red dotted outline). The patient was commenced on a glycoprotein 2b/3a inhibitor and symptoms settled. Further evaluation of his abdominal pain
revealed acute ischaemia of his small bowel secondary to thrombotic occlusion. Panel II: a 44-year-old man with history of childhood Kawasaki disease
with coronary involvement presented with stable symptoms of angina and underwent investigation by coronary angiography. Panel II-D demonstrates
proximal aneurysmal disease of the left anterior descending artery. Intravascular ultrasound evaluation (Panel II-E) highlights a large aneurysm 7 mm in
diameter with minimal evidence of atheroma. The size of the aneurysm prevented accurate assessment by optical coherence tomography (Panel II-F).
Panel III: A 39-year-old woman with a history of hypertension presented with acute onset chest pain, minor troponin elevation, and dynamic anterior
t wave changes on her electrocardiogram. Angiographic assessment (Panel III-G) revealed mild-moderate calibre reduction in the mid-left anterior
descending artery. Optical coherence tomography was undertaken to better delineate the nature of her angiographic abnormalities.

Clinical use of intracoronary imaging 7



Figure 4 (continued) Panel III-H demonstrates evidence of intima-medial detachment with intra-mural haematoma (red arrowheads) in a segment
of the proximal left anterior descending artery that appeared angiographically normal. More extensive intramural haematoma with reduction in
lumen calibre was evident at the level of the angiographic stenosis (Panel III-I). Optical coherence tomography analysis of the distal left anterior
descending artery segment confirmed normal vessel architecture (Panel III-J). The patient was treated conservatively and made an excellent recovery.
Panel IV: a 42-year-old woman without cardiovascular risk factors presented with acute onset chest pain and evidence of anterior ST elevation.
Immediate angiographic assessment (Panel IV-K) revealed mid-vessel occlusion of the left anterior descending artery (black arrowhead). Passage of
an 0.014" interventional guidewire resulted in recanalization of the vessel (Panel IV-L) and resolution of the ECG changes. Optical coherence tomog-
raphy evaluation was undertaken to better delineate the aetiology of presentation. No significant vessel abnormalities were detected proximal (Panel
IV-M), at the level of occlusion (Panel IV-N), or in the distal vessel segment (Panel IV-O). Panel V: a 47-year-old woman with secundum atrial septal de-
fect and Eisenmenger’s syndrome presented to an emergency department with rapidly worsening dyspnoea and palpitations. Electrocardiogram
demonstrated sinus rhythm, normal repolarization, and multiple polymorphic ventricular extrasystoles. The echocardiogram showed normal left
ventricle ejection fraction with only mild hypokinesia of the mid and distal anterior left ventricular wall. Immediate double rule-out computed tomog-
raphy scan (Panel V-P) demonstrated extrinsic compression of the LMS (black arrowhead) from a giant pulmonary artery aneurysm (contour out-
lined with dashed white line). Urgent angiography (Panel V-Q) confirmed a severe ostial stenosis of the left main stem (LMS—white arrowhead) and
TIMI-1 flow in the left anterior descending artery (white asterisk). A percutaneous interventional strategy was adopted and intravascular ultrasound
evaluation was undertaken to appropriately size the LMS. Intravascular ultrasound confirmed dynamic compression of the LMS with complete occlu-
sion of the ostium (Panel V-R), evidence of extrinsic compression (red arrowheads) in the shaft (Panel V-S), and normal vessel in the distal LMS seg-
ment (Panel V-T). The patient proceeded to intravascular ultrasound-guided intervention with an excellent result (Panel V-U).

8 T.W. Johnson et al.
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event where there is evidence of angiographic atherosclerotic
disease.37

Spontaneous coronary artery dissection
Spontaneous coronary artery dissection is observed in 2–4% of angio-
grams undertaken for ACS.38–40 In pre-menopausal women <50 years
old presenting with STEACS, the angiographic prevalence of SCAD is
10.8%.39 The angiographic characteristics can vary considerably, and a
classification system has been proposed.41,42 Type 1 represents the
classical linear coronary defect with potential contrast hold-up, how-
ever, occurs in <50% cases. Type 2 defects are more commonly
observed, either with an abrupt calibre reduction and subsequent
normalization (Type 2a) or with persistent calibre reduction to the
distal vessel (Type 2b). Spontaneous coronary artery dissection can
also mimic coronary atherosclerosis (Type 3—Figure 4) or simply pre-
sent with abrupt vessel closure (Type 4). The findings from intravascu-
lar imaging studies have increased the interventional community’s
awareness of SCAD.43 Intravascular imaging has provided insights into
the aetiology, with evidence of separation of the intima and media
from the adventitia, with or without communication with the vessel
lumen44 and can assist in confirming the diagnosis and guiding treat-
ment.45 However, a significant proportion of SCAD can be diagnosed
angiographically, thereby limiting instrumentation of a dissected vessel
that carries risks of dissection propagation and vessel closure.
Therefore, when possible, a conservative treatment approach to
treatment should be adopted when flow is restored.

The recent ESC/ACCA position paper on SCAD supports the role
of intravascular imaging where a diagnosis by angiography is uncer-
tain.46 If PCI is deemed necessary due to ongoing ischaemia or clinical
instability, it is important to acknowledge that there is an increased
risk of procedural complications, consequently imaging may provide
important guidance, in particular confirmation of the wire position in
true lumen, the longitudinal extent of the vessel disruption and vessel
dimensions for stent sizing, which can be problematic angiographically,
in the presence of extensive intramural haematoma.

Both IVUS and OCT can be used to facilitate diagnosis of SCAD,
and both modalities have strengths and weaknesses. Obvious con-
cerns exist regarding the need for contrast injection to achieve OCT
imaging, and we would advise that IVUS is preferred where there is
evidence of a false lumen (Type 1), and in small calibre and tortuous
vessels, where the imaging probe risks being occlusive. Additionally,
the imaging penetration depth of IVUS can be advantageous in prox-
imal vessel dissections, where the false lumen stretches the external
elastic lamina, increasing the vessel size. However, IVUS resolution

can be insufficient for the detection of intima-media complex fenes-
trations. Despite the vessel disruption associated with SCAD, OCT
can be undertaken, where diagnostic uncertainty exists (typically
Types 3 and 4) and provides greater diagnostic clarity than IVUS in
assessing the distinctive features of intramural haematoma ± intimal
flap46,47 (Figure 1).

Role of intravascular imaging in risk
stratification and vulnerable plaque
detection
The term ‘vulnerable plaque’, first coined by Muller et al.48 in 1980s
was used to describe plaques that are prone to rupture and caused
events. Several autopsy studies have shown that the majority of rup-
tured plaques have a specific phenotype, namely the TCFA. This is
characterized by an increased plaque burden,49 positive remodelling,
a large lipid core covered by a thin fibrous cap,50 macrophage accu-
mulation,51 and the presence of neovascularization.52

Intravascular imaging enables in vivo evaluation of plaque compos-
ition and burden, identifying plaque characteristics associated with
increased vulnerability. Numerous histology imaging validation stud-
ies have examined the efficacy of different invasive imaging modalities
and highlighted the advantages and limitations of these techniques in
assessing plaque burden, morphology, and biology53 (Supplementary
material online, Table S1). In parallel, several prospective large-scale
clinical studies have evaluated the potential value of intravascular
imaging in identifying vulnerable plaques and patients who are at risk
of suffering cardiovascular events.54,55

Invasive detection of vulnerable plaques

PROSPECT and VIVA were the first prospective studies that used
three-vessel IVUS imaging to examine it is efficacy in detecting non-
culprit lesions that are likely to progress and cause cardiovascular
events.54,55 In PROSPECT, a minimum lumen area <_4 mm2, a plaque
burden >_70%, and the presence of a TCFA phenotype, derived by
VH-IVUS, were predictors of subsequent non-culprit MACE. Virtual
histology defined TCFA requires >10% confluent necrotic core on
three consecutive frames and an arc of necrotic core in contact with
the lumen surface for >_36

�
, reflecting the inadequate spatial reso-

lution of IVUS to visualize thin fibrous cap.56 Lesions with these high-
risk plaque characteristics were eleven times more likely to cause
events within a 3.4-year follow-up than simple lesions [hazard ratio
(HR): 11.05, 95% confidence interval (CI): 4.39–27.82; P < 0.001];

Box 1 Indications and clinical value of intravascular imaging in acute coronary syndromes

• Thrombus detection facilitates identification of an ACS culprit lesion.
• OCT is the current gold standard for thrombus detection.
• Intravascular imaging facilitates delineation of underlying plaque aetiology in ACS and may guide tailoring of therapy.
• When a culprit lesion, attributable to a NSTEACS presentation, is not evident angiographically, an intravascular imaging-based assessment

to guide appropriate management should be considered.
• Invasive imaging evaluation in suspected SCAD should be reserved for cases where angiographic assessment is unclear (usually Types 3 and

4 or if clinical/haemodynamic instability).
• Consider intravascular imaging where there is no evidence of significant CAD, in order to characterize MINOCA.

Clinical use of intracoronary imaging 9
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..however, the positive predictive value of these three high-risk plaque
features for subsequent events was low (18.2%).54

The limited efficacy of VH-IVUS imaging in identifying vulnerable
lesions has partially been attributed to limitations of the modality
to detect plaque composition.57 To overcome this drawback com-
bined NIRS-IVUS imaging has been proposed. Near infrared spec-
troscopy imaging relies on the spectroscopic analysis of the
backscattered light emitted by a NIR probe which provides infor-
mation about the cholesterol content in the arterial wall. The out-
put of this analysis is displayed in the chemogram which is a colour-
coded map of the probability of the presence of lipid-rich plaques
(LRPs). Lipid-rich plaques were originally defined as a lipid core
>60

�
in circumferential extent with >200 mm depth and an overly-

ing fibrous cap thickness <450 mm.58 A measure of the lipid burden
is the lipid-core burden index (LCBI): it is calculated by dividing the
number of yellow pixels by the total number of pixels available,
multiplied by 1000 (LCBI ranges from 0 to 1000). The LCBI4mm is
used to quantify the maximal regions of LRP within the interven-
tional target region, divided into 4 mm coronary segments.59

Combining NIRS with IVUS facilitates accurate and less operator
dependent detection of LRP with visualization of the lumen and
plaque architecture57,60 (Figure 6). To date, there are four pro-
spective studies demonstrating high LCBI as a strong predictor of
coronary events on a patient level using either LCBI or LCBI4mm to
predict subsequent MACE.61–64

The LRP study was the first prospective large-scale imaging study
that examined the efficacy of this modality in detecting vulnerable pla-
ques on a lesion level. The study enrolled 1241 patients with stable
angina (46.3%) or acute coronary syndrome (53.7%) and assessed
more than 5000 lesions with NIRS-IVUS.65 Lesion-level analysis dem-
onstrated that the presence of LRP (LCBI4mm >400) was associated
with a four-fold higher event rate (HR: 4.11, 95% CI: 2.3–7.34;
P < 0.001). Also, the adjusted patient-level analysis showed that for
each 100 unit increase of maxLCBI4mm the risk of non-culprit MACE
increased by 18% and patients with maxLCBI4mm greater than 400
were at 87% higher risk of non-culprit MACE at 24-month follow-
up.66 Similarly, a retrospective OCT study demonstrated that OCT-
detected non-culprit LRP increased the risk of non-culprit MACE,
with a more modest two-fold increase in risk (HR: 2.06, 95% CI:
1.05–4.04; P = 0.036).67

These studies have demonstrated the diagnostic potential but also
highlighted the limitations of intravascular imaging in detecting vulner-
able lesions. The complex nature of the studies led to significant lev-
els of patient exclusion due to incomplete data and failed matching of

temporal imaging (only 53% of lesions that caused events during
follow-up in the PROSPECT trial were studied by IVUS at baseline).
Additionally, it is important to recognize that procedural complica-
tions were reported in association with multi-vessel imaging (0.3–
1.6%67–69). In the light of these limitations and an absence of data to
support interventional passivation of vulnerable lesions, the routine
clinical use of invasive imaging for vulnerable plaque detection cannot
be recommended. Studies testing the potential value of vulnerable
plaque detection (COMBINE OCT-FFR, NCT02989740;
PROSPECT II, NCT02171065) and plaque sealing (PROSPECT II,
NCT02171065; PREVENT, NCT02316886) are ongoing.

Role of intravascular imaging in risk stratification

Four prospective studies examined the potential value of intravascu-
lar imaging in identifying high-risk patients. In the ATHEROREMO-
IVUS study, that included 581 patients who had coronary angiog-
raphy for clinical purposes and single-vessel VH-IVUS imaging,
patients that had lesions with a TCFA phenotype and an increased
plaque burden (>70%) had a higher incidence of MACE at 1 year fol-
low-up.70 However, in this study, the event rate was low and thus it
was not possible to examine whether VH-IVUS provided additional
prognostic information than the well-known clinical risk factors. In
addition, the LRP study and the ATHEROREMO-NIRS sub-study
showed that plaque composition, and in particular an increased LCBI
was associated with worse prognosis.63,66 Finally, in the CLIMA study
(presented as a late breaking clinical trial at EuroPCR 2018) that
included 1003 patients who were referred for coronary angiography
and underwent OCT imaging in a non-diseased proximal left anterior
descending coronary artery, the hard composite Endpoint of cardiac
death and target vessel MI was 7.5� higher in patients who had
lesions with a TCFA phenotype, lipid arc >180

�
, minimum lumen

area <3.5 mm2 and macrophages accumulations, compared with
those with plaques without high-risk characteristics (18.9% vs. 3.0%).

Non-invasive evaluation of high-risk plaque has obvious advantages
in minimizing procedural risks and has demonstrated excellent nega-
tive predictive value. However, the positive predictive value of com-
puted tomography (CT) coronary angiography is poor, limiting its
role in the prediction of acute coronary events (Figure 5).

Identification of high-risk/large burden plaque should trigger in-
tensification of secondary preventative treatment, including lifestyle
modification and tailoring of anti-atherosclerotic medication.
However, further research is required to confirm the incremental
value of intravascular imaging over clinical variables in risk stratifica-
tion and subsequent treatment guidance.72

Box 2 Role of imaging in vulnerable plaque detection and risk stratification

• IVUS-defined plaque burden >60–70% is predictive of subsequent MACE.
• Lipid-rich plaque (LCBI4mm > 400) is a predictor of plaque vulnerability and associated with a higher incidence of MACE.
• OCT and IVUS derived plaque characteristics enable identification of high-risk patients.
• Invasive plaque characterization provides superior positive predictive value of future events than CTCA.
• Identification of presumable high-risk plaque characteristics using IVUS, OCT, or NIRS-IVUS can be considered to identify high-risk patients

who would benefit from an increased intensity of risk factor modification and emerging therapies targeting atherosclerosis. Prospective val-
idation of this strategy requires confirmation.

10 T.W. Johnson et al.
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..Imaging of angiographically
ambiguous coronary findings

Invasive coronary angiography remains the most commonly used imag-
ing modality to assess the coronary vasculature. Angiographic ambiguity
in the stable population tends to reflect excessive plaque burden (un-
detectable by angiography), calcification (see Part 11) old (clinically si-
lent) plaque rupture, coronary tortuosity, or aberrant vessel anatomy.
Intravascular imaging provides clarity where the angiogram demon-
strates haziness, an eccentric or unexpected lesion or prevents delinea-
tion of a lesion through aneurysmal/ectatic or overlapping vessels. The
availability of angiographic co-registration has facilitated reliable analysis
of the intracoronary image acquisition; however, it is important to ac-
knowledge that interpretation requires experience and expertise.

Plaque burden
Intravascular ultrasound facilitates a thorough assessment of the en-
tire vessel wall and demarcation of the luminal contour and external

elastic lamina allows quantification of plaque burden (Figure 6). It
requires a level of IVUS expertize to assess these plaque characteris-
tics especially in the presence of calcific plaques that mask the exter-
nal elastic lamina borders.

The highly attenuating nature of a lipid pool and necrotic core, as
well as the relatively low penetration of OCT, limits its ability to visu-
alize deeper vessel structures and consequently plaque burden can-
not reliably be measured. However, work has been undertaken to
find surrogates for plaque burden/vessel area with quantification of
quadrants of plaque, generating a measure of plaque free wall angle.
A plaque free wall angle >220

�
has been shown to predict an IVUS

plaque burden <40% with PPV 78% and NPV 84%.73 Similarly, quanti-
fication of LRP by OCT, with measurement of lipid arc and lipid
length has been shown to predict MACE, need of revascularization
and recurrent ischaemia.67

Part 1 of the consensus document outlined the importance of
delineating plaque burden to guide stent placement, aiming to avoid
areas with >50% plaque burden.1 Furthermore, both PROSPECT

Figure 5 A comparison of the positive and negative predictive values of intravascular and non-invasive imaging modalities. Summary of the positive
and negative predictive values of coronary imaging-derived variables for prediction of clinical outcomes in the PROSPECT, ATHEROREMO-IVUS,
PREDICTION, ATHEROREMO-NIRS, CLIMA, and PROMISE studies. AP, angina pectoris; CACS, CT angiography calcium score; CD, cardiac death;
CTA, computed tomography angiography; ESS, endothelial shear stress; LCBI, lipid-core burden index; MACE, major adverse cardiac events; MI,
myocardial infarction; MLA, minimal lumen area; PB, plaque burden; PCI, percutaneous coronary interventions; TCFA, thin-cap fibroatheroma; TV-
MI, target vessel-MI. Adapted from Koskinas et al.71
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and the ATHEROREMO-IVUS studies have confirmed an association
between the presence of plaque burden >70% in non-culprit vessels
with higher MACE rates.70,74 Therefore, detection of plaque is im-
portant to guide optimal invasive and non-invasive treatment.

Coronary aneurysms and ectasia
Defining aneurysmal or ectatic coronary segments can be challenging
angiographically, especially as most recognized definitions require
comparison against a ‘normal’ vessel segment.75–77 Consequently,
recognition of aneurysmal and ectatic disease by adult cardiologists
has been frequently overlooked.78 Historical IVUS evaluation of an-
eurysmal disease highlights the weakness of angiographic interpret-
ation, as only a third of patients had the IVUS appearance of true or
pseudo-aneurysmal disease. In the majority of patients the ‘aneurys-
mal’ segments represent complex plaque or normal vessel neigh-
bouring significant stenoses.79 Therefore, where uncertainty exists it
is prudent to consider intravascular imaging to clarify the underlying
vessel morphology. In aneurysms exceeding a diameter of �5 mm,
IVUS is the preferred modality due to its depth of penetration, facili-
tating evaluation of large vessel dimensions (Figure 3).

Kawasaki disease is the best described cause of coronary aneurysm
and the leading cause of acquired heart disease in children in devel-
oped countries.80 Surveillance of aneurysmal coronary disease is best
achieved non-invasively80; however, the incidence of undisclosed an-
eurysmal disease, discovered at the time of coronary angiography,
has a reported rate of 3–5%.78,81 Kawasaki disease patients may pre-
sent with ischaemic symptoms precipitated by the development of
stenoses at the outlet of aneurysms or giant aneurysm thrombosis.82

Intervention in these patients can be challenging due to calcification
of the aneurysm and difficulties in assessing the true luminal dimen-
sions,83 and the use of IVUS should be considered to guide
intervention.80

Aorto-ostial ambiguity
The aorto-ostial junction is a unique segment of the coronary arterial
tree and provides both diagnostic and interventional challenges. The
angle of take-off of the proximal coronary vessels, from the aorta,
can result in the angiographic appearance of a significant stenosis and
functional assessment may be difficult to perform. For these reasons,
morphological assessment [confirmation of atherosclerotic disease/
assessment of the minimal lumen area (MLA) (see Role of
Intravascular Imaging for Assessment of Lesion Severity section)]
should be considered to better determine the ischaemic potential.
Furthermore, the aorto-ostial position offers unique tissue character-
istics with greater amounts of elastic tissue increasing the risk of stent
recoil and subsequent failure.84 Achieving a blood-free field for imag-
ing is challenging in aorto-ostial lesions, consequently IVUS is recom-
mended. Co-axial positioning and disengagement of the guide
minimizes over-estimation of the MLA or mis-interpretation of true
ostial disease, respectively.85

Angiographic assessment can also be impacted by the anomal-
ous take-off of the coronary vessels or extrinsic compression.
There are many patterns of coronary artery anomaly, however, a
‘malignant course’ at risk of ischaemia or sudden cardiac death is
associated with an inter-arterial course (i.e. between the aorta
and pulmonary artery).86 Most often these anomalies are

Figure 6 Intravascular imaging evaluation of a high-risk coronary plaque. An example of high-risk coronary plaque evaluated using all three available
intravascular imaging modalities. (A) A near infrared spectroscopy chemogram of a bystander vessel segment in a patient presenting with acute myo-
cardial infarction. Yellow areas represent lipid and the region between the black lines highlight the region with a maximal lipid-core burden index of
558. Matched cross-sectional images from intravascular ultrasound to near infrared spectroscopy, greyscale intravascular ultrasound (B) and optical
coherence tomography (C) highlight the differences in vessel evaluation with each modality. The circumferential near infrared spectroscopy output
highlights lipid signal extending from 4 o’clock to 11 o’clock (interrupted by guidewire artefact at 6 o’clock). The intravascular ultrasound greyscale
image facilitates assessment of plaque burden (EEM: red, lumen: green), which amounts to 61%. Optical coherence tomography (C) of the same pla-
que shows the fibrous cap as a signal rich luminal layer from 3 o’clock to 12 o’clock and a light attenuating signal poor region behind. The fibrous cap
thickness amounts to 64 lm. All methods are consistent with a lipid rich fibroatheroma and optical coherence tomography in addition indicates the
presence of a thin cap fibroatheroma.

12 T.W. Johnson et al.
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discovered incidentally in later life, with increasing frequency now
that CT angiography is widely used.87 Occasionally younger
patients with syncope or angina may require confirmation of the
flow limiting potential of the compressive mechanism.88 IVUS
may be useful to confirm extrinsic compression and a slit-like
lumen. Coronary compression can also result from dilatation of
the pulmonary artery due to pulmonary hypertension,89 acute
aortic dissection,90 or following heart surgery91 and invasive
imaging may be required to provide diagnostic clarity (Figure 4).

Transplant vasculopathy
Cardiac allograft vasculopathy (CAV) is a leading cause of long-term
mortality after heart transplantation. Routine surveillance for CAV is
necessary to ensure early diagnosis, as patients are frequently asymp-
tomatic due to allograft denervation. Although non-invasive imaging
of the coronaries can be achieved with CT, there are limitations that
prevent visualization of the distal vascular bed and image quality can

be degraded by high resting heart rates.92 Coronary angiography
remains the preferred screening tool for CAV but the diffuse, con-
centric nature of vasculopathy, combined with positive remodelling,
can lead to a failure to diagnose CAV or an underestimation of dis-
ease severity. Intravascular imaging allows cross-sectional evaluation
of the vessel wall and IVUS has been shown to provide prognostic in-
formation, with progression of intimal thickening >_0.5 mm from base-
line to 1 year associated with non-fatal MACE.93 Furthermore, VH-
IVUS can provide further characterization of CAV.94 Consistent with
findings in native CAD, IVUS-defined attenuated plaque has been
shown to be associated with an increased event rate and is predictive
of rejection.95 OCT offers higher resolution and initial experience
suggests it will provide early detection of CAV and offer insights into
the mechanisms underlying the process.96,97 The European
Association of Cardiovascular Imaging recommends that IVUS is used
in conjunction with angiography, where expertise is available, with a
baseline study undertaken to assess for donor heart CAD and at

Figure 7 A schematic representation of the role of minimal lumen area assessment in the evaluation of left main coronary disease.

Clinical use of intracoronary imaging 13
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..1 year after transplantation to detect rapidly progressive CAV98 and
guide changes to immunosuppressive therapy.

Role of intravascular imaging for
assessment of lesion severity

Percutaneous coronary intervention for stable angina is indicated for
haemodynamically significant coronary stenoses with insufficient re-
sponse to optimized medical therapy and/or the improvement of
prognosis through treatment of proximal major epicardial coronary
disease, multi-vessel disease with impaired left ventricular (LV) func-
tion, last remaining vessel, or the presence of significant ischaemia
(involving >10% of LV mass).5 The limitations of coronary angiog-
raphy, for delineating the true nature/extent of coronary atheroma,
have already been outlined in Part 1.1 Pressure-derived invasive indi-
ces of coronary lesion significance have been accepted as the gold
standard method of invasive ischaemia assessment, with a Class I,
Level of evidence A, recommendation for the use of fractional flow
reserve (FFR),5,99–101 or instantaneous wave free ratio (iFR).102,103

Attempts have been made, through comparison with FFR, to identify
imaging-based vessel/lesion measurements predictive of ischaemia.
Minimal lumen area is the intravascular imaging metric used to define
flow-limiting stenoses; however, it has limitations to identify a single
cut-off measurement due to variations in patient body mass, heart
weight, lesion complexity, and the territory of ischaemic potential.
Despite these limitations, in many cases intravascular imaging can de-
tect significant stenoses overlooked by angiography or exclude
pseudo-narrowings falsely detected angiographically. The limitations
of pressure-derived functional indices for the assessment of left main
lesion severity and the proven value of IVUS to guide PCI suggest a
liberal diagnostic application.

Minimal lumen area as a predictor of
ischaemic potential in left main lesions
Interpretation of left main coronary artery (LMCA) disease requires
special attention due to its prognostic importance. The aorto-ostial
and distal branching pattern of the vessel often makes assessment of
lesion significance challenging,104 and the interventional cardiologist
must balance the need for confirmation of ischaemia with pressure-
derived assessment vs. an improved understanding of the anatomical
characteristics of the lesion. Ideally, use of both FFR and intravascular
imaging would provide a comprehensive assessment of a LMCA

lesion but in the real world the equipment costs and time constraints
limit this strategy. Additionally, physiological evaluation of the LMCA
can be challenging, especially in ostial stenosis or situations with con-
comitant disease in the left anterior descending artery or LCX, and
clinical trial data supporting its use in this specific setting is scant.
Consequently, the use of imaging-derived measurements to predict
ischaemia can offer benefits for the rationalization of procedural time
and costs and was given a Class IIa recommendation in the most re-
cent ESC guidelines on myocardial revascularization.5

The proximal nature of the LMCA segment limits the variability of
its calibre and anatomy, minimizing the impact of body mass and heart
size on vessel and lesion measurements, however, a population vari-
ation in the LMCA MLA cut-off has been observed.105 An Asian study
of IVUS-derived MLA detected a cut-off of 4.5 mm2, correlating with
an FFR <_0.80106; however, a previous US study observed that an
IVUS MLA <5.9 mm2 has the best correlation with an FFR <0.75
(sensitivity 93% and specificity 94%).107 The average MLA in patients
recruited to these studies differed by 2.8 mm2 (4.8 vs. 7.6 mm2, re-
spectively). In addition to the geographical differences in LMCA size,
IVUS has also demonstrated differences in the characteristics of
LMCA disease, with a greater burden of atheroma but less calcifica-
tion in Asian LMCA lesions.108

In a prospective application of the MLA cut-off, the LITRO study
guided LMCA PCI by IVUS criteria and 6 mm2 was found to have
the highest sensitivity and specificity for detecting ischaemia.109 At
2 years, the outcome of deferred patients was equivalent to that of
the revascularized group. Importantly, the outcome of the few
patients with LMCA MLA <6 mm2 that did not undergo revascula-
rization was significantly worse. Consequently, it appears reason-
able to defer LMCA revascularization if the MLA > 6 mm2, to
intervene if the MLA < 4.5 mm2 and to consider further evaluation
with FFR if the MLA is between 4.5 and 6 mm2, with appropriate
consideration of associated comorbidities (Figure 7). The additional
advantages to intracoronary imaging-guided LMCA intervention
have been addressed in the Part 1 document and includes the abil-
ity to reveal pseudo-stenoses at the ostium due to ostial spasm, in-
complete vessel filling due to streaming and poor catheter
alignment.

Limited data exists supporting the use of OCT for guidance of left
main intervention and is not recommended for evaluation of ostial
disease or short left main stems. Importantly, the MLA cut-off values
established for IVUS assessment of the LMCA cannot be directly
translated to OCT.

Box 3 Consensus recommendation on the role of imaging to assess lesion significance

• Pressure-derived haemodynamic assessment is the gold standard for deferring revascularization in patients with non-LMCA stable coronary
artery disease.

• LMCA sizing demonstrates less variability than other major epicardial vessels and cut-off values of MLA <6 mm2 and <4.5 mm2 to predict
functional impact have been validated with IVUS, in Western and Asian populations, respectively.

• LMCA IVUS-derived MLA >6 mm2 can be considered non-ischaemic.
• LMCA IVUS-derived MLA <_4.5 mm2 can be considered ischaemia generating.
• LMCA IVUS-derived MLA 4.5–6 mm2 suggests that additional invasive or non-invasive assessments of ischaemia are advisable.
• MLA measurement of non-LMCA lesions is not recommended for the assessment of lesion significance due to variations according to ves-

sel calibre and subtended myocardium.

14 T.W. Johnson et al.
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Minimal lumen area as a predictor of
ischaemic potential in non-left main
lesions
Beyond LMCA disease, the variations in patient body mass, vessel
calibre, and the subtended myocardium prevent the use of a single
MLA cut-off value to define ischaemic potential and guide appropri-
ate intervention. A meta-analysis of >2500 patients confirmed mod-
est diagnostic accuracy for both IVUS and OCT for identification of
haemodynamically significant lesions, with marked differences in the
median cut-off values for both modalities [1.96 mm2 (1.85–1.98
mm2) for OCT and 2.9 mm2 (2.7–3.1 mm2) for IVUS (area under the
curve 0.80 and 0.77, respectively)].110 Similar to the LMCA MLA as-
sessment, a geographical variation has been observed with smaller
measurements reported in Asian studies. Direct comparison of
OCT, IVUS, and FFR has been reported and demonstrated slight su-
periority of OCT over IVUS, specifically in smaller vessels (<3 mm)
secondary to better delineation of the luminal area.111,112

We recommend the use of pressure-derived assessment of lesion
significance, but acknowledge that evaluation of the MLA data may as-
sist in decision-making where intracoronary imaging has been used.

Conclusion

Since the publication of Part 1 of the expert consensus, the ESC
guidelines committee has acknowledged the results of randomized
trials comparing OCT with angiography- and IVUS-guided PCI and
elevated the recommendation for use of OCT in stent optimization
from Class IIb to IIa.2 Furthermore, the first all-comers study of IVUS
vs. angiography-guided PCI, appropriately powered to demonstrate
clinical superiority, has reported, clearly favouring an imaging-guided
approach.3 With an increasing complexity of both patient comorbid-
ity and CAD, considered for percutaneous revascularization, the role
of intravascular imaging to guide PCI optimization and improve long-
term outcomes will continue to grow.

Part 2 has outlined additional indications for the use of intravascu-
lar imaging to overcome some of the limitations posed by invasive
coronary angiography. As yet, evidence from dedicated clinical trials
to support many of these potential uses is lacking but among the
community of imaging experts it is believed that intravascular imaging
will facilitate a tailored approach to PCI for patients at high risk of re-
current events and stent failure.113 Continued advancements in the
technology, with higher resolution, faster image acquisition times,
combined OCT/IVUS catheters, and more sophisticated co-
registered image analysis, will facilitate greater adoption through ease
of use and interpretation. Intracoronary imaging-guided PCI has an
exciting future.

Supplementary material

Supplementary material is available at European Heart Journal online.
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113. Koskinas KC, Nakamura M, Räber L, Colleran R, Kadota K, Capodanno D,
Wijns W, Akasaka T, Valgimigli M, Guagliumi G, Windecker S, Byrne RA.
Current use of intracoronary imaging in interventional practice—results of a
European Association of Percutaneous Cardiovascular Interventions (EAPCI)
and Japanese Association of Cardiovascular Interventions and Therapeutics
(CVIT) Clinical Practice Survey. EuroIntervention 2018;14:e475–e484.

Clinical use of intracoronary imaging 19


